merciements vont également au FNRS et à l'IRSIA pour les mandats accordés à deux d'entre nous, ainsi qu'au Fonds de la Recherche Fondamentale Collective pour le soutien financier dont a bénéficié cette recherche.

Nous apprenons que la structure de LiCl.2en vient d'être décrite brièvement par Brusset, Gillier-Pandraud & Delcroix (1966) dans une communication au Bulletin de la Société Chimique de France. Retenons que les distances interatomiques indiquées par les auteurs, bien que moins précises (écart-type moyen de 0,04 Å; R=0,172) sont comparables à celles que nous donnons ci-dessus, à l'exception toutefois des liaisons avec le lithium dont la position proposée est manifestement inexacte.*

Références

- BRUSSET, H., GILLIER-PANDRAUD, H. & DELCROIX, S. (1966). Bull. Soc. chim. Fr. 10, 3363.
- BUERGER, M. J. (1958). X-ray Crystallography, p. 377. New York: John Wiley.
- CRUICKSHANK, D. J. W., PILLING, D. E., BUJOSA, A., LOVELL, F. M. & TRUTER, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. p. 45. Oxford: Pergamon Press.
- DURANT, F. (1965). Thèse de doctorat. Université de Louvain.
- DURANT, F., PIRET, P. & VAN MEERSSCHE, M. (1967). Acta Cryst. 22, 52.

* Note ajoutée aux épreuves: – Cette position est corrigée dans un article plus detaillé de Mme Jamet-Delcroix qui vient de paraître (Jamet-Delcroix, 1967).

- DURANT, F., VERBIST, J. & VAN MEERSSCHE, M. (1966). Bull. Soc. chim. Belges, 75, 788.
- GERMAIN, G., PIRET, P., VAN MEERSSCHE, M. & DE KERF, J. (1962). Acta Cryst. 15, 373.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- ISBIN, H. S. & KOBE, K. H. (1945). J. Amer. Chem. Soc. 67, 464.
- JAMET-DELCROIX, S.H. (1967). J. Chim. Phys. 64, 601.
- KING, G. S. D. (1963). 1620 L.S. Refinement, program ERA 302.
- LAVINE, J. R. & ROLLETT, J. D. (1956). Acta Cryst. 9, 269.
- NAKATSU, K., SAITO, Y. & KUROYA, H. (1956). Bull. Chem. Soc. Japan, 29, 428.
- NAKATSU, K., SHIRO, M., SAITO, Y. & KUROYA, H. (1957). Bull. Chem. Soc. Japan, 30, 158.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PIMENTEL, G. L. & McClellan, A. L. (1960). The Hydrogen Bond. p. 290. London: Freeman.
- PIRET, P., RODRIQUE, L., GOBILLON, Y. & VAN MEERSSCHE, M. (1966). Acta Cryst. 20, 482.
- ROBSON, A. & TRUTER, M. R. (1965). J. Chem. Soc. p. 630. SIM, G. A. (1958). Acta Cryst. 11, 420.
- SWINK, N. L. & ATOJI, M. (1960). Acta Cryst. 13, 639.
- TRUTER, M. R. & Cox, E. G. (1956). J. Chem. Soc. p. 948.
- VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.
- WIEBENGA, E. H. & SMITS, D. W. (1950). Acta Cryst. 3, 265.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151.

Acta Cryst. (1967). 23, 788

Two Independent Determinations of the Crystal and Molecular Structure of *trans*-Dichlorobis(dimethyl sulfoxide)palladium(II)

BY M.J. BENNETT, F.A. COTTON AND D.L. WEAVER

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

AND R. J. WILLIAMS AND W. H. WATSON

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, U.S.A.

(Received 30 January 1967 and in revised form 14 April 1967)

The crystal and molecular structure of dichlorobis(dimethyl sulfoxide)palladium(II), PdCl₂(DMSO)₂, has been determined from three-dimensional X-ray data in two independent studies. The complex crystallizes in the space group $P2_1/c$ of the monoclinic system with two molecules in a unit cell of dimensions (averages of the two studies) a=6.460, b=9.380, c=9.555 Å and $\beta=111.8^{\circ}$. Since the palladium atoms lie on crystallographic centers of symmetry the compound assumes a *trans* planar configuration. The dimethyl sulfoxide is found to be sulfur-bonded to the palladium atom in accordance with infrared spectral data. Anisotropic least-squares refinements led to residuals of 0.031 (with hydrogen atoms held fixed) and 0.118 (hydrogen atoms omitted) for the M.I.T. and Texas Christian studies, respectively. Some important dimensions (weighted averages) are: Pd-Cl 2.287 Å, Pd-S 2.298 Å, S-O 1.475 Å, S-C 1.778 Å, angle CSO 109.1^{\circ}.

Introduction

The isolation of well-defined complexes containing dimethyl sulfoxide, $(CH_3)_2SO$ (hereafter abbreviated

DMSO), was first reported relatively recently (Lindquist & Einarsson, 1959; Cotton & Francis, 1960), though the powerful solvent properties of DMSO were generally recognized much earlier. A number of other reports have appeared in which the formation of metal complexes of DMSO (Meek, Straub & Drago, 1960; Cotton & Francis, 1961) and other sulfoxides (Francis & Cotton, 1961) has been described. Attempts were made very early to establish the structures of these compounds indirectly on the basis of various physical measurements. One study of this sort, utilizing infrared spectra, led to the proposal (Cotton, Francis & Horrocks, 1960) that from shifts in the SO stretching frequency it could be concluded that in nearly all the known complexes the sulfoxide was attached to the metal (or other Lewis acid) through the oxygen atom. The exceptions postulated were complexes formed by Pd(II) and Pt(II), in which coordination by the sulfur atom was proposed.

The investigations described in this paper were undertaken to determine conclusively whether this postulate of sulfur bonding was correct and, in any event, to provide precise structure details upon which basis a close analysis of the metal to sulfoxide bonding could be founded. For various reasons the compound $PdCl_2(DMSO)_2$ appeared to be very well suited to the purpose. A brief report of the M.I.T. study has been published earlier (Bennett, Cotton & Weaver, 1966).

Only after the two studies were complete, or very nearly so, was it realized that both had been carried out. It was therefore agreed, at the suggestion of Dr R.E. Marsh, that the two investigations should be published jointly, taking this somewhat unusual opportunity to compare the results of two entirely independent investigations which are comparable in the range and degree of refinement of the data. In the *Experimental* section, the two studies are described entirely separately [the M.I.T. work in part (1) and the Texas Christian work in part(2)]. Comparison and combining of results is done in the later sections.

Experimental (1)

Preparation

 $PdCl_2(DMSO)_2$ was prepared by the method of Cotton & Francis (1960) and crystals suitable for X-ray studies were obtained by slow diffusion of benzene into a solution of the complex in methylene chloride. The physical properties of the sample were in good agreement with those reported previously for the compound.

Collection and reduction of data

The crystals were examined by the precession method and found to belong to the uniquely determined space group $P2_1/c$ (C_{2h}^5 , no. 14) from the systematic absences h0l, l=2n+1, and 0k0, k=2n+1. From precession photographs and measurements made with a General Electric Single Crystal Orienter the following unit-cell dimensions were found:

 $a = 6.450 \pm 0.005, b = 9.38 \pm 0.01, c = 9.54 \pm 0.01 \text{ Å}, \beta = 111.8^{\circ} \pm 0.1^{\circ} (\lambda \text{Cu } K\alpha, 1.5418; \lambda \text{Mo } K\alpha_1, 0.70926 \text{ Å}).$

The measured density was found to be 2.07 ± 0.05 g.cm⁻³ by flotation in a mixture of methyl iodide and ethyl iodide; this compares favorably with a calculated density of 2.066 g.cm⁻³ for two PdCl₂(DMSO)₂ molecules in the unit cell.

Intensity data were collected on a single crystal in the form of an orange needle of dimensions 0.1×0.1 $\times 0.4$ mm at room temperature. The crystal was mounted on the diffractometer with a^* in the nonstandard setting $B2_1/a$ parallel to the spindle or φ axis. A modified version of Furnas's moving-crystal, moving-counter method was used (Cotton & Elder, 1964); the mosaic spread of the crystal led to a choice of 2.66° in 2θ for the scan. The 836 independent reflections accessible in the spherical range $\theta_{MO} \leq 24.4^{\circ}$, were collected at room temperature ($\sim 22^{\circ}$ C) and corrected for the Lorentz and polarization factors. The profile of intensity versus φ was plotted for several h00 reflections, which occurred at $\gamma = 90.0^{\circ}$, and found to show a maximum variation of $\pm 5\%$. Since at this orientation there was a maximum variation in the X-ray path and because the angular dependence of the transmission factor is small for the range over which the data were collected $(\mu r_{\text{max}}=0.5; O \le \theta \le 24.4^{\circ})$, absorption corrections were neglected. The data, indexed for $B2_1/a$, were transformed into the standard setting $P2_1/c$.

Solution and refinement of the structure

Since there are two molecules in the unit cell of space group $P2_1/c$, the Pd atoms are required to lie on centers of symmetry. From a three-dimensional Patterson function the sulfur and chlorine atoms were readily located, although not distinguished from each other. Two cycles of least-squares refinement phased on these three atoms led to a residual R_F [equation (1)] of 0.23%.

$$R_F = \Sigma |F_o - F_c| / \Sigma |F_o| \tag{1}$$

A difference Fourier synthesis was then calculated and the oxygen and carbon atoms were readily located. Further isotropic refinement phased on all these atoms resulted in a residual of 0.096%.

Three more cycles of least-squares refinement were attempted during which both positional and thermal parameters began to oscillate by more than an e.s.d. The 87 weak reflections for which counting statistics were unsatisfactory were omitted from further refinements. The atoms were reset at the centers of their oscillations and isotropic least-squares refinement using a unit weighting scheme converged to $R_F=0.068$ in three cycles. A difference Fourier map calculated from the final isotropic structure factors showed evidence of anisotropic thermal motion. Four cycles of leastsquares refinement with inclusion of anisotropic temperature factors of the form

$$\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$$

for all atoms led to a residual of 0.035.

An analysis of the variation of $(F_{obs} - F_{calc})^2$ with F_{obs} revealed very little divergence from unit weights.

Т	he five	e (colur	nn	s c	ont	ain	ı va	lues	of	` <i>h</i> , :	101	₽₀(N	1. I	.T.)	, 1	$0F_c($	Μ.	I.T	.),	10 <i>F</i>	o (Ге>	kas	Chr	risti	ian) ai	nd	10 <i>F</i>	c (Гех	as	Chri	stia	an).		
H 0 0 1 1357 1391 2 1107 1078 3 1266 1218 4 121 146 5 336 326 6 310 305 7 8	176 150 331 327 - 320 314 - 0 34 - 134 182	7 65 4 3 2 1 0 1	H 1 50 -32 135 -140 252 -241 136 -131 103 -100 100 -85 221 191 157 137 51 43	0 104 203 119 72 88 220 116	-17 -139 -242 -116 -106 -83 205 115 12	4771017745	595 330 166 1 932 660 142 1 446 460 58	595 5 347 3 185 11 960 8 655 6 135 8 435 4 347 4 462 3 72 1	90 554 98 310 16 1131 18 859 04 599 21 1029 94 397 51 300 84 431 13 93		135 11 150 14 58 1 110 -10 45 -4 130 -12 205 -20 66 -5 51 -6	17 14 2 18 0 5 17 11 5 6 10 12 10 19 8	2 113 1 138 2 72 3 -111 3 -91 3 -91 3 -140 0 -48 0 -50 0 -70		147 65 170 122 65 172 78 365 - 155 - 208 -	147 56 157 120 -71 151 -78 347 136 205	122 14 101 5 168 15 101 12 80 -6 174 14 0 -6 356 -35 111 -15 182 -19	3 4 5 6 6 5 4 3	682 385 520 H 53 50 58 215	5 2 5 2 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3	723 6 374 3 511 5 137 1		5 15	H 6 1 -65 6 -165 8 -148 7 137	3 153 0 120 112 105 123 - 105 123	29 -35 -86 -42 154 122 -2 -36 129		13 60 20 70 35 43 92 58 56 35 47 14 75 28	5 35 8 72 0 32 6 43 0 35 1 15 7 26 9	8 551 7 642 5 418 6 538 5 318 4 264 0 94 8 165	********	290 2 250 2 602 5 483 4 582 5 271 2	93 3: 57 2: 90 5: 87 4: 80 4: 70 2: 2	0 275 1 259 0 275 0 527 0 6 527 0 6 621 0 5 7 259 0 7 259	*******	н 9 8	147 - 73 102 0 95 139	-148 -80 -87 61 66 138
H 0 2 -9 -7 -8 -8 -8 -6 340 340 -5 -3 521 490 -2 -2	121 75 190 248 94 108 235 272 331 340 65 -60 501 440 - 484 448 - 47 -16 -	23434	213 205 185 183 130 140 128 125 # 1 5 270 265 265 265 613 586	203 167 119 104 235 252 667	179 180 121 101 49 272 281 589	67 -07 -54 -3	н ; 85 - 193 - 1 295 -	2 5 -27 -87 192 2 305 3	0 29 0 36 0 -10 82 -74 10 -195 87 -312	-10	H 3	10	2 124 2 124 12 172 14 111 14 116 10 261 17 549		220 447 440 270	210	150 -15 182 12 182 20 522 32 227 22 401 44 447 41 296 27		53 212 37 67 H	-207 -83 5 3	60 - 66 - 159 -2 0 168 L	20 23 24 08 1	0 20 1 20 2 27 3 9 8 8	8 213 7 205 8 273 1 90 3 73 H 6	214 151 218 81 89 0 112 4 162	165 158 238 62 44 55 -72 178	-5 1	H 7 23 -13 02 -6 21 12 43 -1	4 17 16 13 17 16 18 11 5 9	5 -127 0 -26 5 -83 9 106 0 -45 0 26 1 97	• 	M 8 105 147 1 73 111 1	1: 95 1 85 1. 50 2 10 1	1 139 1 3 82 0 -22 23 65 19 121 0 29 37 82 75 -12			128 122 204 171 223 290 183 249 200 113	95 116 184 159 229 249 159 185 185 185
-1 1020 1081 0 608 566 1 377 377 2 11 3 535 511 4 738 731 5 636 643 6 217 230 7	389 432 - 363 378 - 025 983 - 477 504 732 701 630 598 194 206 260 314 117 149		336 332 470 480 770 795 222 235 633 612 543 527 131 131 527 523 256 266	296 519 686 216 474 538 116 510 220 136	302 462 759 215 569 484 122 482 254 160		180 - 90 156 111 95	-68 156 1 100 1 110	13 -189 63 -110 0 -32 43 144 13 71 0 25 0 91 0 42 0 27		837 8 463 4 957 9 902 8 428 4 703 7 340 3	5 94 5 94 18 50 18 52 10 11 21	2 703 4 412 2 902 2 822 2 399 2 638 0 319 3 132 90 253		333 350 687 175 352 431	700 351 356 677 170 360 442	773 68 353 35 353 35 663 63 179 16 395 33 426 41 0 11 280 27 199 19	0 -7 -6 -7 -8 -7 -6 - 6 - 6 - 7 - 6 - 7 - 7 - 7 - 7 -	213 243 438 35 320 525 68 648	210 243 445 -3 315 530 76	100 1 305 3 197 2 234 2 442 4 303 2 477 4 53 521 5	73 - 28 - 11 - 59 - 92 - 80 63 70	7 15 30 39 39 39 39 39 39 39 39 39 39 39 39 39	1 156 2 375 16 410 15 553 15 321 13 255 16 575	240 173 337 341 240 522 284 229 505 254	256 152 362 388 230 500 270 220 511 246	*	H 7	11 5 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	5 92 1 43 6 145 5 109 0 113 9 209 8 115 8 302	*** ****	н 8 47	6 1 1 1 1	92 -74 0 -28 99 -76 55 151 41 84 16 123 42 112 0 36	-2-10-12	H 91	154 125 113 122 0	-89 -70 -103 -08 -21
H 0 4 -10 -9 -7 412 410 -6 286 290 -5 570 547 -4 557 535 -3 291 287	144 194 152 165 - 260 262 - 372 407 - 563 529 - 595 517 - 275 268 -		H 1 1 118 117 71 85 200 -196 458 -436 492 -458	319 0 0 184 387	109 67 25 -187 -410	-10 -8 -7 -8	105 178 232 57 408 381	2 6 1 2 97 11 167 1 230 2 56 607 5 388 4	04 113 38 155 38 253 26 110 70 190 38 233 82 58 19 349 41 380	-7 -8 -2 -1 0 1	H 3 68 - 231 2 127 1 113 1 203 1 H 3		14 219 16 219 16 92 10 92 18 167	-9-87-65-43-2	H 305 275 295	87 310 271 290	0 -3 0 -4 90 2 0 -1 84 9 311 30 307 25 317 28	234567	585 262 575 80 38	572 263 596 5 5 6	562 5 274 2 555 5 336 3 231 2 252 2	11 47 26 26 30 70 -L	3 35 4 41 5 7 0 5 3	H 6	335 385 151 257 176 5 178 0	323 371 140 211 164 39 43	-10123	55 44 78 21 525 5 71 2	53 39 51 25 75 28 42 24 13 16	18 441 14 281 14 534 16 463 13 252 12 405 13 238 19 135 13 191	-10123450	217 2 191 2 207 2 402 4 265 2	10 2 13 2 13 2 07 4 75 2 3 1 2 1 2	26 200 16 196 26 217 16 380 82 267 53 316 43 348 79 185 05 202 65 149	******		125 137 125 131 143 62 125 126 133	97 136 129 133 132 95 113 109 90
-2 735 750 -1 75 83 0 242 228 1 840 803 2 193 197 3 540 532 4 840 846 5 175 175 6 7	779 681 0 77 214 109 741 745 179 176 487 482 626 579 144 151 354 344 - 267 261 -		H 1 365 361 365 361	7	-337 -271 -98 33 20 35 156	0123456	790 458 551 633 241	248 8 450 4 557 4 645 3 250 2 4 2 2 2 2 7	23 363 10 710 91 408 44 514 33 580 35 229 36 324 38 236		353 3 140 1 87 245 2 65 - 206 1 406 3 187 1	11 11 11 11 11 11 11 11 11 11	228 34 228 35 156 32 97 35 227 98 -70 52 191 42 373 18 180		123 - 145 - 90	-91	203 22 119 -9 147 -12 0 -7 137 -12 140 -7 164 14 186 21	-3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	100 36 117 108 60 н	-103 -195 -110 105 16 5 5	201 -1 75 - 128 262 2	96 - 96 - 96 - 96 -	· 12 2 10 1 20 1 23 •		151 264 178 187 240 0 0 150	-95 -239 -124 -170 -212 -44 -4 -8 -8 131		H 7 00 125 -1: 95 -1: 240 -2: 207 -2: 72 - 110 -1	25 12 25 12 20 10 10 20 75 11 10 11	1 TO 06 12 -118 -96 57 -244 50 -204 11 -68 15 -111 0 1	-20	51 °	50 1	13 89 12 193 50 223 16 190 75 240	-1 -3 -2 -1	н 91; н 91;	128 116 108 108 149	-1> 83 103 98
H 0 6 -10 -2 -3 -7 242 240 -6 580 570 -5 738 731 -4 557 538 -3 955 965 -2 645 447	123 71 - 121 138 - 225 249 - 237 240 - 237 240 - 237 240 - 541 583 - 777 700 - 591 537 - 936 957 - 606 957 -	****	453 460 725 735 450 448 661 645 636 617 220 223 483 482 272 283	483 838 427 555 474 180 491 299 123	555 5719 7 10 5 617 5 61	-7 6 5 - 3 2 1 0 1 2	90 153 77 78 63 116 - 168 - 192 -	101 148 1 80 1 61 115 1 163 1 190 2 210 1	0 77 0 107 53 135 88 65 00 84 0 69 13 -100 78 -147 76 -147 74 -189		350 3 H 3 40 - 71 - 145 -1 87 -		04 326 00 212 58 314 28 154		307 365 247 646 480 336 646 236 247 256	317 383 258 638 497 336 677 208 202 625	301 32 395 36 262 24 514 65 367 31 667 62 241 24 236 24 236 24	41000000000	291 547 372 391 570 143 285 227	307 575 373 376 563 148 271 227	300 3 564 5 377 3 415 3 134 3 281 3 281 281 3 281 3 28	16 - 56 - 63 - 11 - 59 - 59 - 25 - 25 -	8 7 5 34 5 31 5 34 5 31 2 34 1 2 34 1 2 34	15 401 12 311 15 501 15 251 16 251 16 251	182 159 240 374 318 472 318 257 318 399	182 180 335 411 329 485 336 255 426		к 7	7	0 -33 0 25 72 140 72 135 54 229 54 129		ж 1	1 1 1 1 1 1	Va 139 Va 139 0 51 06 90 50 178 34 111 55 147 69 143	012244	N 10 556 550 340 338 336 332	0 228 270 350 158 154	336 323 339 166 153
-1 300 203 0 747 723 1 161 157 2 110 102 3 337 330 4 46 -30 5	275 263 694 679 152 156 - 91 98 - 240 302 - 0 -1 - 144 146 - 164 188 -		H 1 140 142 168 171 237 241 245 242 125 120 107 107 62 60	108 184 188 228	a 140 173 238 228 228 0 107 98 0 98		115 - H 345 251	2 8 2 8 351 4 265 3	0 -48 0 -10 13 204 127 310 101 357	2101234	50 - 45 - 65 65	5 72	0 32 0 47 0 61 0 59 0 23	-7 -0 -5 -4 -	H 140 143 137	4 7 -152 -146 -138	0 12 162 20 188 19 95 -10 171 -15 171 -12 168 -12	-21 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	117 90 91 75	5 6 130 82 88 83	156 240 87	40 53 55 85 -	2 2i	H 6 10 17	212 301 148 176 7 123 184	206 250 161 1+3 117 170		275 2 105 1 213 2 290 2	87 29 02 11 08 22 95 21 10 24 24	0 264 15 101 22 197 76 262 88 157 71 288 40 246 72 183 93 213	-6 -5 -3 -2 -1 0 1		1222	95 172 71 250 57 248 84 207 61 246 43 175 51 139 65 147	*****	H 10 145 -137 65 -72 H 10	110 1 92 84	69 -61
-8 -7 -6 230 207 -5 97 85 -4 345 346 -3 536 507 -2 515 495 -1 831 817 0 650 848 1 516 516	96 59 94 145 225 233 91 87 313 341 402 473 418 464 762 782 571 600	23 4 7 6 5 4 3	113 -108 → 1 182 171 187 200 365 360 193 195	9 165 148 203 351	-108 -93 0 115 5 229 188 225 188 225 188	-32-10123 + 5	285 88 371 78 120 375	286 2 100 363 3 73 112 1 386 3 1 2 2	99 281 96 107 106 337 0 70 131 117 156 352 13 129 28 215 53 247	-765432101	275 3 403 4 377 3 360 3 121 1	11 2 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	80 18+ 7+ 311 08 291 18 294 50 428 50 428 50 428 50 517 500 551 18 117		50 256 222 180	75 262 222 183	0 - 283 24 234 20 182 19 182 10 129 -2	3 3 4 5 6 7 6 1 2 7 7 6 1 2 7 7 7 6 1 2 7 7 7 6 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		5 7	103 1	26	3 1 11 11 11 11 11 11 11 11 11 11 11 11	2 10 75 -18 55 -14 33 -13	0 170 153 153 193 106 112	25 2 -189 -142 -139 -177 -67 -55		₩ 7 121 1 ₩ 7	1 1 27 1 1 27 1	22 95 32 118 31 91 39 129 36 -90	-5			27 115 27 144 06 202 91 141 98 195 34 129 0 108	********	75 72 321 308 286 280 331 331	110 124 70 138 102 70 200 214 284	125 131 50 131 99 70 257 248 315
2 516 531 3 5 H 0 10 -8 -7 -9 145 145	477 473 146 174 170 205 129 174 85 148 121 154 96 80 159 159	21012345	325 313 +37 +31 215 217 +08 +12	267 427 180 339 130 195 140	7 309 7 407 0 214 9 365 9 317 0 100 5 249 0 126	-7 -65 -54 -3 -2 -1 0 -1	F 117 113 90	2 9 63 116 1 116 1 87	0 -49 0 -13 0 19 0 67 125 118 125 102 0 77 0 33		H 3 75 - 90 - 72 -	10 81 88 82	24 131 0 62 10 204		205 393 415 303 490 310 270	216 402 420 305 485 310 275	154 16 290 21 241 22 409 41 423 41 304 30 468 40 314 20 283 20 283 20		482 667 508 665 538 213 376	492 680 516 660 535 211 362	530 639 505 511 209 353 163	86 - 65 - 18 - 18 - 18 - 41 - 41 - 40 -	······································	40 261 56 27 52 26 92 49 32 34	199 151 167 131 246 5 257 5 458 6 231	98 168 184 109 255 258 271 472 325			224221	57 250 76 262 15 296 06 195 15 187 79 157 11 73 75 154 11 73	1234 7.65	158 43 177	162 23 178 1 9 1	51 160 57 142 59 116 88 198 45 154		н 10 -	282 338 240 130 140 3 102	280 289 222 119 135
-4 157 160 -3 155 160 -2 355 351 -1 245 246 0 262 266 1 2 3 4	149 172 141 175 308 352 240 233 249 243 404 383 170 213 229 251 232 261	54321013	60 -56 108 85 98 93 166 161 151 150 -0 -0 H 1 1	144	0 -60 0 14 0 70 0 85 4 150 1 134 0 55		H 392 271 382 275	2 10	103 168 135 262 131 231 187 377 184 305 174 261 137 387		н)	11	0 -13 0 -32 0 9 52 141 84 199 22 323 98 302		90 107	-85	168 19 199 10 182 11 196 0 129 1 134 -10		H 52 27 57 67 85	5 8 - 55 - 30 - 67 - 90				н .	343 176 210 156 100 9	318 131 104 153 60 54 94		н 7 Н 7	10 10 11	50 150 15 -36 39 90 50 19		365 287 485 445 236 402 223	368 2 277 2 43 238 1 601 2 225 1	73 322 00 262 54 220 88 339 12 207 74 164 49 264	-3 -2 -1 -8 -7 -6 -5	72 80 ∺10	70 0 68 118 192 186 220	40 -18 66 144 201 172 213
H 0 12 -7 -5 -5 -3 -2 -1 0	164 191 144 167 172 224 164 206 0 95 144 138 0 57 83 1 121 130	1013		184 131 144 201 114 220 114 220	4 230 1 147 4 181 7 263 6 165 0 255 6 237 9 204	0 1 -3 -2 -1	м	2 11	0 11 0 37 0 37 0 37	110123 43	нJ	12	82 370 94 196 94 196 95 198 90 87 32 148 0 52 0 52	-1 0 1 2 3	223 106	-230 -112 + 10	220 -2 140 -1 80 - 0 - 0 - 0 -	2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	235 133 301 431	253 141 295 441	94 243 284 430 331 411 321 175 206	12 42 37 79 99 175 196 137 188	21 87 65 61	н 6.	159 170 170 151 129 182 226	123 122 126 149 102 173 204			2222	29 202 19 181 47 241 64 269 83 191 93 218 93 218 72 170 0 84 0 108	87 85 210	n 160 - 225 -	• 2 1 163 225	33 115 31 63 0 39 113 112 0 41 39 -150 31 -196			124 170 76 180 82 166 232 110	119 177 84 89 168 77 154 194 122
H 0 14 -7 -5 -5 -7 -7 -2 -2 -1 0	121 174 182 244 187 244 205 262 211 239 179 182 134 171 96 108	02345678	н 2 558 531 475 455 778 753 240 240 587 591 435 438	0 77 25 60 47 18	4 409 2 721 6 239 4 550 9 423 1 164 8 309	-32-101	*	2 13	150 200 210 218 361 315 278 305 320 283 363 304 138 179		н 3		0 -10 0 -10 0 -41 0 -22 0 -43 0 -37 34 98		130 295	135 290	188 1 224 2 206 1 143 1 287 2 248 2 325 3 171 1 188 1	10 14 14 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	н н	• 10 • 11	118 163 0 166 109	-4	2101234	нь	305 210 210 243 162 162	274 202 168 231 147 161 162	•	н 7 н 7	12	22 47 0 -7 50 82 66 108 79 159		233 - 97 H	226 1 -65 1	183 -226 102 -96 186 173 145 119 174 168 190 285 145 164	7	H 10	154 5 5 58 58 112	125 43 74 14 -82
H 1 0 1 375 - 332 2 192 - 190 3 361 - 336 4 418 - 600 5 242 - 240	152 -249 347 -320 419 -385 195 -224	7 6 3 4 3 2 1 0	H 2 75 66 72 71 412 364 650 620 355 341 392 378	1 8 45	0 -59 0 -1# 2 46 0 57 1 349 3 536	-3	296 215 201 63	3 J 285 210 J 191 J 70 3 1	103 -115 218 170 198 187 202 202			1	18 121 82 144 44 176 42 228 74 249 42 187 80 186 24 128		к	• 11	220 14 111 98 95 132 90	4 1 76 2 80 5 83 - 7 23 - 4	н	5 14	197 168 194 175 190 137 131	195 192 133 102 33		н 6	125 146 176 123 146 129 131	117 149 155 122 141 133 116	-10-12	н 7	15	0 63 164 75 161 58 123 18 121 0 63 0 82 0 73 0 60	101234507	340 100 330 312	340 105 330 306	135 308 133 121 104 298 155 282 177 187 190 290 115 178 131 121 154 135	********		110 118 214 242 242 326 234 234 220 286	110 125 234 250 344 204 222
6 102 -106 H 1 1 -7 116 108 -6 442 443 -5 226 228 -4 396 385 -3 898 865 -2 182 190 -1 970 995	487 435 188 212 427 374 942 838 180 154	123 05 07 10	238 220 65 -51 57 -50 96 -92 81 -72 H 2	11	5 202 0 -26 0 11 0 -65 0 -98 6 -77 0 -76 5 82		585 385 617 1147 1 452 996 1 1031 1 191 -	606 386 593 160 155 1025 1050	228 249 598 579 598 579 514 568 634 1054 634 1054 674 422 208 -172	012345678	1116 11 340 1 543 1 255 2 400 2	52 51 50 7 31 2 10 4 1	28 511 76 809 20 220 15 372 25 325 92 193	-1	м	• 12	147	57 10 -7 97 -6 97 -6 91 -3 91 -3 91 -3 99 16	H		184 156 137 149 184	di 09 45 178 161	2 2	нь. н7 20-21	14 108 167 151	150 149 169 151	0 - 2 3 4 5 6	н 8 292 2 68 215 2 380 3 181 1	90 65 20 11 85 3 77 11 2	80 192 39 347 86 174 89 295 50 203		H 90 107 72 68	126 82 110 -88 -70	113 82 98 74 180 181 143 123 90 78 119 101 125 -84 78 -79 113 -76	**** ***	H 10	82 136 78 90 7 88 90	81 106 50 91 -4 -49
0 1103 1205 1 512 500 2 2408 1425 3 815 772 4 380 375 5 651 652 6 185 181 8 H 1 2	515 423 810 720 359 325 503 404 144 187 212 245	9876543210	305 311 482 43 398 46 970 830 663 67 1463 1600 497 500	12 34 91 70 71 124	8 180 3 116 4 307 2 377 3 923 4 753 4 753 4 627 4 1486 7 470	2345678	396 225 215	403 223 462 220 3 2 95	380 361 228 190 0 71 388 4-8 250 211 248 210 320 258	-8 -7 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	+5 190 -1 345 - 552 - 553 - 275 -	-8 1 91 2 37 3 31 5	16 83 0 51 0 25 37 21 03 -171 56 -305 31 -484	-10-12-3	н	• 13	185 1 140 1 206 1 137 1 0 1 0 1 118	85 0 96 2 1 96 2 25 3 15 4 18 5 79 6 86 -7	1125 627 570 603 160 286	6 1 6 1 6 1 6 1	008 009 114 208 221	27 19 19 17	3 11 5 11 6 7 6 5 4	00 -9 35 -14 85 -19 H 7 75 37	5 146 2 122 0 190 1 146 208 355 271 7 337	-115 -142 -198 138 179 383 275 372	-10123	H 6 72 - 130 -1 95 - 136 1 H 6	1 80 25 35 90 47 1	0 -05 70 -91 0 -44 05 125		H 276 342	9 5 265 341	188 -191 143 135 144 135 149 157 119 288 261 236 261 236 259 305	*******	H 10	8 112 236 236 242 242 220 200	110 121 215 241 241 232 213 194
-7 75 -73 -6 125 -123 -5 171 -172 -4 90 -81 -3 48 -48 -2 57 -26 -1 695 680 0 780 783 1 323 310 2 413 376	104 -48 156 -141 0 -54 0 -3 678 578 335 294 419 313	12345678	ооз он 998 966 36 31 310 311 356 365	30 37 27 17	9 562 0 918 0 19 3 270 6 358 0 36 0 36 0 249 8 185		65 95 107 - 372 - 170 - 180 - 160 - 53 46	-90 -125 -350 -182 -182 -150 -28 53	90 -111 368 -313 138 -161 180 -14 180 -14	1234567	300 -3 82 - 121 - 163 -	91 3 58 1 28 1 65 1 1 1 2 1	01 -26 0 -8 37 14 0 19 26 10 54 156 11 25 11 25 14		μ	• 1•	161 1. 140 1 101 1 101 1 101 101 15# 1 168 1 147 1 111	20 -6 36 -5 02 -6 23 -3 -2 39 -2 -1 39 -1 56 1 51 22 89 3	126 270 353 95 305 140 116	131 263 353 67 288 133 -110	140 214 246 131 108 -	30 121 18 140 140		05 10 87 16 88 37 55 44 43 5 90 38 15 30 45 14	5 659 2 136 0 1 61 1 325 0 294 1 146 304 158	553 173 71 344 271 146 288 161		495 5 471 4 391 3 625 6 320 3 288 2 395 3	10 4 10 4 82 3 11 4 15 2 90 2 93 3	86 179 85 285 50 275 52 480 05 454 32 375 40 556 33 309 47 264 67 336		і77 281 ж	185 281 9 6	198 183 259 263 253 255 174 177 229 230 104 -46 171 174 119 101	** *******	H 10 1	88 95 0 132 116 170	109 105 47 48 103 108 145
4 91 -93 5 50 -55 H 1 3 -7 393 400 -6 276 275 -5 345 332 -6 790 755	131 137 0 -80 0 -33 0 -40 364 400 275 267 324 318 766 720		77 -74 41 -10 71 -5 83 -6 5 -30 142 -14 162 -15 68 -54 101 9	11	3 -72 0 -72 0 -57 0 -57	-7 -5 - 5 - 2 - 0 -	H 283 232 316 815 580 885 1042 1042 395 847	3 3 267 228 312 805 595 910 1097 410 848	284 304 264 220 504 102 792 781 587 55 822 966 822 966 100 664 371 870 785	87 65 67 7 10 -	355 130 535 691 253 985 645 637	27 1 27 1 30 4 91 4 95 1 45 4	0 91 109 245 158 156 158 136 158 136 158 225 151 225 151 225 151 225 151 225 151 58 150 58	1234	H 55 88 87 70 76	57 -82 80 67 72	87 - 100	80 -9 80 -9 80 -7 -0 -5	141 148 # 235 95 416	-145 -155 • - 	151 - 190 - 153 124 210 223 136 341	161 151 161 10 214 243 98 98		н 7 61 -5 05 -10 56 5 42 13 03 29	150 190 2 5 75 5 111 6 71 3 132 2 233	-51 -57 -64 15 152 2v3		63 H 8 121 1 71 175 -1	55 1 21 21 1 50 75 1	75 64 44 110 65 167 34 107 34 107 38 62 110 99 84 51 -147	0 1 2 3 4 - 8 - 7 - 0	Ħ	97	143 106 157 133 0 -3 0 2 116 -10 125 112 137 140 206 197		H 10 I	226 136 150 118 12 92 90	101 138 133 113 110 74 73 03
-2 705 708 -1 1063 1125 0 267 283 1 1032 1021 2 758 725 3 245 243 4 645 650 5 271 280 6	656 661 303 223 898 911 738 652 207 217 622 600 292 275 140 145 263 310		98 94 75 84 H 2 263 26 72 7	10	0 -51 0 -51 0 -51		215 520 138 #0	218 535 143 3 4 108	90 7. 100 9		377 400 411		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		230 98 195 520 287 800 920 652	235 47 205 514 300 802 910 802	154 1 250 2 128 1 140 1 461 4 278 2	22 - 2 51 - 2 52 - 1 52 - 1 52 - 1 52 - 1 52 - 1 51 - 2 51 - 2	300 245 720 285 320 617 242 412 395	243 243 243 243 243 243 243 243 243 243	208 210 280 210 284 614 223 374 349 136 231	243 447 443 443 443 443 443 443 443 443 4		21 12 90 7 91 -10 1 7 30 33 50 1-	2 122 1 71 2 108 3 222 215 3 255 8 466 6 410	-90 2257 29	101214 7.01	141 -1 258 -2 -0 80 -	42 1 57 2 -0 87 1					100 188 194 187 213 207 163 147 255 248 247 234 171 152 233 216 174 131 122 42 157 14-		H 10 1	40 42 126 126	21 18 20 18
										1.7/						***/	1 10																		1.14			

Table 1. Observed and calculated structure factors for the two investigations

Refinement with an empirical weighting scheme produced no significant variation in either parameters $(<1.7\sigma)$ or e.s.d.'s (<10%) and unit weights were therefore retained.

A difference Fourier synthesis phased on the last cycle of refinement revealed six peaks around the two carbon atoms of 0.5 to 0.75 e.Å-3 at reasonable locations for hydrogen atoms. Since the standard deviation of the electron density of the difference map was estimated to lie between 0.07 e.Å⁻³ (Cruickshank, 1949) and 0.11 e.Å⁻³ (Lipson & Cochran, 1953), these peaks were considered to be real. Thus, six hydrogen atoms were included in four additional cycles of anisotropic refinement leading to a residual of 0.031. The hydrogen atoms were assigned fractional coordinates corresponding to the positions obtained from the difference Fourier synthesis and anisotropic temperature parameters approximately 10% greater than those of the carbon to which they were attached. None of the hydrogen parameters were varied in the refinement.

In the final cycle of refinement the largest shift in the parameters was half of the standard deviation, an average shift being one-fourth of the standard deviation. A final difference Fourier map calculated from the parameters obtained in the last cycle of refinement exhibited no electron density maximum exceeding $0.5 \text{ e.} \text{Å}^{-3}$. Atomic scattering factors used throughout for the neutral light atoms were those of Ibers (1962). The neutral Pd scattering factor was obtained from a tabulation by Cromer & Waber (1965) and was corrected for the real part of anomalous dispersion (Dauben & Templeton, 1955). The observed and calculated structure factors are listed in Table 1. The final coordinates and thermal parameters are given in Table 3.

The following programs for the IBM 7094 computer were used and are gratefully acknowledged.

1. W.G.Sly, D.P.Shoemaker and J.H.Van den Hende. Two- and three-dimensional crystallographic Fourier summation, ERFR-2 (1962).

2. D.P.Shoemaker. M.I.T. X-ray goniometer package, MIXG-2 (1962).

3. C.T. Prewitt. A full matrix crystallographic least squares program, SFLSQ3 (1962).

4. J.S. Wood. Molecular geometry with estimated standard deviations, MGEOM (1964).

5. D.P.Shoemaker. Crystallographic bond distance, bond angle and dihedral angle computer program, DISTAN (1963).

6. D.P.Shoemaker and R.C.Srivastava. Anisotropic temperature factor interpreting program, VIBELL (1963).

7. R.C. Elder. General data reduction and presentation programs, RAWRE, PDATA and PUBTAB (1964).

Experimental (2)

Preparation

Palladium(II) chloride obtained from Englehard Inds. Inc. was used without further purification. Dimethyl sulfoxide obtained from Fisher Scientific Company was dried over calcium hydride and vacuum distilled before use.

trans-PdCl₂(DMSO)₂ was prepared by dissolving palladium(II) chloride in DMSO at 100 °C and allowing the solution to cool slowly. Single crystals of the bright orange material, suitable for X-ray studies, were obtained upon recrystallization from a DMSO-acetone mixture, m.p. 203–204 °C. The crystals showed a tendency to twin, but examination with a polarizing microscope permitted the selection of untwinned specimens.

Collection and reduction of data

A crystal $0.23 \times 0.13 \times 0.13$ mm was used for the collection of all X-ray data. Precession photographs indicated that the crystal belonged to the monoclinic system. Systematic extinctions 0k0, $k \neq 2n$; h0l, $l \neq 2n$ placed the crystal in space group $P2_1/c$ (no.14) with the *b* axis unique. The unit-cell dimensions were obtained from the *h0l* Weissenberg photograph and a *b*-axis layer line photograph (λ Mo $K\alpha_1$, 0.70296 Å). The films were calibrated by superimposed sodium chloride powder lines. The unit-cell dimensions are $a=6.48\pm0.01$, $b=9.380\pm0.005$, $c=9.562\pm0.004$ Å, $\beta=111^{\circ}49'\pm10'$. The measured density, $d_0=2.037$ g.cm⁻³ (flotation method), indicated two molecules per unit cell; $d_c=2.055$ g.cm⁻³.

Levels hol to h10l were recorded by the equi-inclination Weissenberg technique. The intensities of the reflections were estimated visually with calibrated strips prepared from reflections of similar area. In this way, 1258 non-zero reflections were obtained. Absorption corrections were applied with the use of Bond's values with $\mu R = 0.187$ (International Tables for X-ray Crystallography, 1959).

Solution and refinement of structure

Since the space group is $P2_1/c$ with two molecules per unit cell, the palladium atoms are required to occupy special positions which are located at centers of symmetry. This requires like ligands to be *trans* to each other and a *trans* square-planar configuration was assumed. An electron density projection was calculated with the signs derived from the palladium atom positions. Positions corresponding to sulfur and chlorine atoms in a square-planar array were evident although they were indistinguishable at this stage. A series of successive Fourier syntheses was used to locate the lighter atoms and to assign the sulfur and chlorine positions definitely.

The atomic scattering factors used in the structure factor calculations were those computed from relativistic Dirac-Slater wave functions (Cromer & Waber, 1965). Anomalous dispersion corrections of the type $f=f_0+\Delta f'+i\Delta f''$ were applied to the scattering factors (International Tables for X-ray Crystallography, 1962). In all cases, the imaginary term was negligible.

Initial refinement was carried out through use of a difference electron density map. A full-matrix least-

squares technique was used for the final refinement. The quantity minimized was $\Sigma w(F_o - F_c)^2$. A few reflections that were obviously affected by extinction were omitted in the final calculations. Several cycles with isotropic temperature factors decreased R ($R = \Sigma (F_o - F_c)/\Sigma F_o$) to 0.137 and three cycles with the anisotropic factors gave the final value of R = 0.118.

Three different weighting schemes were used. The resulting parameters all agreed within the estimated standard deviations, and the results for the unit weighting scheme are presented for comparison with the M.I.T. calculations. The other weighting schemes used were $F_o < 4|F_{\min}|$, $w = 1/(16|F_{\min}|^2)$ and w = 1.0; $F_o > 4|F_{\min}|$, $w = 1/|F_{obs}|^2$ and $w = |F_{\min}|/4|F_{obs}|$. The only noticeable change for the latter two schemes was a trend toward equalizing the two S-C distances.

The final shifts in all parameters were well below their estimated standard deviations. Table 1 lists the observed and calculated structure factors while Tables 2 and 3 give the final positional and thermal parameters.

The following computer programs were used:

1. W.H.Watson and R.J.Williams. Data reduction program (IBM 1620).

2. R.Shiono. Structure factor calculations in X-ray crystallography (IBM 1620).

3. R.Shiono. General three-dimensional Fourier synthesis program (IBM 1620).

Table 2. Fractional coordinates of atoms

	x	У	Z
Pd	0.0	0.0	0.0
	0.0	0.0	0.0
S	0.0642 (3)	0.1981 (2)	-0.1200(2)
	0.0638 (7)	0.1969 (5)	-0.1202(4)
Cl	0.3628(3)	-0.0114(2)	0.1647 (2)
	0.3616 (7)	-0.0125(7)	0.1652 (5)
0	0.0578 (10)	0.1655 (6)	-0.2729(5)
	0.0626 (29)	0.1697 (19)	-0.2710(15)
C(1)	0.3166 (13)	0.2885 (9)	-0·0167 (8)
	0.3122 (34)	0.2851 (28)	-0.0168(23)
C(2)	-0.1347(13)	0.3333 (8)	-0.1324(8)
	-0.1461(34)	0.3348(22)	-0.1362(20)

4. M.E.Pippy. Calculation of bond lengths and bond angles (IBM 1620).

5. H.A.Levy and W.R.Busing. Full-matrix least-squares (IBM 7094, Texas A and M University).

Description of the structure

Molecular structure

Table 4 gives the molecular dimensions while Fig. 1 shows the molecular structure of $PdCl_2(DMSO)_2$ projected along the *a* axis. Since the Pd atom lies on a crystallographic center of symmetry, the molecule is required to have a *trans* planar configuration.

Table 4. In	ntramole	cular	distance	s* (Å)	and	angles	s (°)
together	r with th	eir es	timated s	standard	l dei	viation	5

	Determina	tion (1)	Determina	tion (2)
	Distance	e.s.d.	Distance	e.s.d.
Pd–S	2.299	0.002	2.291	0.005
Pd-Cl	2.287	0.002	2.290	0.006
S—O	1.476	0.002	1.46	0.02
SC(1)	1.780	0.008	1.75	0.03
SC(2)	1.776	0.007	1.84	0.03
	Angle	e.s.d.	Angle	e.s.d.
SPdCl	93.00	0.06	93.3	0.2
Pd	114.1	0.3	113.4	1.0
Pd - S - C(2)	110.5	0.3	110.0	0.9
Pd —S—O	112.4	0.5	115.0	0.9
O—S—C(1)	109-2	0.3	107.6	1.3
OSC(2)	109.1	0.3	107.7	1.2
C(1)-SC(2)	100.9	0.3	102.3	1.3
C(1)-H(av.)	1.07	†		
C(2)-H(av.)	0.97	†		

* All distances uncorrected for thermal motion.

† H atom positions derived from electron difference map.

Refinement (1)

The Pd-Cl distance of 2.30 Å is exactly that found previously in a norbornadienedichloropalladium(II) complex (Baenziger, Doyle & Carpenter, 1961) while the Pd-S distance of 2.30 Å compares quite favorably with that of 2.33 Å in Pd(SCN₂H₄)₂Cl₂ (Oi, Kawase, Nakatso & Kuroya, 1960). The two crystallographically independent S-C distances are equal within ex-

Table 3. Anisotropic thermal parameters ($\times 10^4$)

	β_{11}	β ₂₂	β ₃₃	β_{12}	β_{13}	β_{23}
Pd	129 (2)	51 (1)	52 (1)	4 (1)	17 (1)	2 (1)
	115 (4)	50 (6)	47 (2)	11 (3)	23 (2)	5 (2)
S	191 (5)	53 (2)	47 (2)	-3(3)	36 (3)	2 (2)
	212 (11)	52 (8)	55 (4)	-1(5)	48 (5)	-2(3)
Cl	151 (5)	85 (2)	111 (2)	-2(3)	11 (3)	16 (2)
	150 (10)	104 (10)	116 (6)	3 (7)	3 (6)	14 (5)
0	411 (21)	93 (7)	65 (6)	-20 (10)	85 (10)	-13 (6)
	471 (61)	121 (25)	76 (16)	-16 (30)	127 (26)	-24 (15)
C(1)	223 (22)	89 (10)	97 (10)	45 (13)	41 (13)	-1 (8)
.,	204 (53)	124 (35)	109 (25)	63 (34)	47 (29)	-5 (22)
C(2)	286 (23)	65 (9)	94 (10)	45 (12)	47 (13)	13 (8)
	278 (57)	62 (25)	90 (21)	42 (28)	89 (28)	4 (16)

perimental error at 1.778 ± 0.007 Å, while the S-O distance is 1.475 ± 0.005 Å. The environment around the sulfur atom is nearly tetrahedral with the angles ranging from 100.9 to 114.0°. The average C-H distances are reasonably close to the value of 1.09 Å accepted (Pauling, 1960) for an sp^3 hybridized carbon atom bonded to hydrogen.

Refinement (2)

The Pd–S and Pd–Cl bond lengths are experimentally identical, $2 \cdot 290 \pm 0.006$ and $2 \cdot 291 \pm 0.005$ Å respectively, and the bond angles around the palladium atom are $87 \cdot 3$ and $92 \cdot 7^{\circ}$. The sulfur atom in each DMSO group is in an approximate tetrahedral environment with angles ranging from $102 \cdot 3$ to $115 \cdot 0^{\circ}$. The two independent C–S bond lengths are $1 \cdot 84 \pm 0.03$ and $1 \cdot 75 \pm 0.03$ Å in the unit weighting scheme and $1 \cdot 82 \pm 0.03$ and $1 \cdot 76 \pm 0.03$ Å for the others.

Intermolecular distances

All intermolecular contacts up to 4 Å were calculated. The pertinent ones are listed in Table 5. None of these are excessively short and no further significance is attached to them.

Analysis of anisotropic motion

Root mean square amplitudes of the atomic vibrational ellipsoid axes for $PdCl_2$.(DMSO)₂ are given in

Fig. 1. The $PdCl_2(DMSO)_2$ molecule viewed along the crystallographic *a* axis. The palladium atom lies on an inversion center.

Table 5. Intermolecular contacts in $PdCl_2(DMSO)_2$

tom of reference molecule	Atom in neighboring molecule	Distance
Cl	$\begin{array}{l} O (x, \frac{1}{2} - y, \frac{1}{2} + z) \\ C(1) (x, \frac{1}{2} - y, \frac{1}{2} + z) \\ C(1) (\bar{x}, y - \frac{1}{2}, \frac{1}{2} - z) \\ C(2) (x, \frac{1}{2} - y, \frac{1}{2} + z) \end{array}$	3·95 Å 3·79 3·72 3·50
S	O $(x, \frac{1}{2} - y, \frac{1}{2} + z)$	3.57
0	C(1) $(x, \frac{1}{2} - y, z - \frac{1}{2})$ C(2) $(x, \frac{1}{2} - y, z - \frac{1}{2})$ C(2) $(\bar{x}, y - \frac{1}{2}, -\frac{1}{2} - z)$	3·37 3·20 3·33

Table 6 together with their direction cosines. These are referred to principal axes in a cartesian system in which x is parallel to a, y parallel to b and z parallel to c^* . The anisotropy of the individual atoms is that expected. For example, the Cl minor axis is along the Pd-Cl bond direction, the major axis being perpendicular to the plane of the complex and to the Pd-Cl bond. Similarly the oxygen and two carbon atoms have their minor axes in the S-O bond direction and S-C bond directions respectively. The palladium atom vibrates in such a way that the minor axis lies roughly along the Pd-Cl bond direction. The major axis lies slightly below the plane of the complex and bisects the S-Pd-Cl angle.

Comparison of results

A comparison of the two independent sets of parameters and their estimated standard deviations emphasizes the main factors in the accuracy of crystal structure determinations. The two main features affecting the precision of the determined values are (a) accuracy of data measurement, and (b) the number of observations. Clearly in this case determination (1), using diffractometer data, gains from criterion (a) while determination (2), from film data, is better under criterion (b). In this example it would appear that the improved accuracy in the measurement of the intensities more than offsets the larger number of observations to the extent that the values for the estimated standard deviations of the positions in determination (1) are, in general, one third the values of those for determination (2). The agreement between the sets of parameters is satisfying with no discrepancy exceeding 3σ , σ being that in determination (2).

Cruickshank (1960) gives a simple formula for coordinate e.s.d.'s for data that are isotropic in three dimensions and have no atoms on special positions:

$$\sigma(x) \simeq \frac{R}{\overline{S}} \left(\frac{N}{8p}\right)^*$$
 (centrosymmetric case)
where

 $R = residual \Sigma |\Delta F| / \Sigma |FOBS|$

- \bar{S} =r.m.s. reciprocal radius for the planes observed p=difference between the number of observations
- and the numbers of parameters
- N= the number of atoms, of the type being considered, that are needed to give a scattering power equivalent to the total asymmetric unit at \overline{S} .

Although both data sets are approximately isotropic, clearly the formula is invalid since the palladium atom is on a special position. However, the ratio of the e.s.d.'s of the two determinations should be closely approximated by the expression:

$$\frac{\sigma_1(x)}{\sigma_2(x)} \simeq \frac{R_1 \bar{S}_2}{R_2 \bar{S}_1} \left(\frac{N_1 p_2}{N_2 p_1}\right)^{\frac{1}{3}}$$

which on substitution of the relevant values, $R_1 = 0.031$, $R_2 = 0.118$, $\bar{S}_1 = 0.90$, $\bar{S}_2 = 1.05$,* $p_1 = 744$, $p_2 = 1198$, $N_1 \simeq N_2$, gives $\sigma_1(x)/\sigma_2(x) \simeq 1/2.5$, which is in reasonable agreement with the observed results.

A semiquantitative treatment of the β_{ij} 's is more difficult because the lack of isotropy in data set (2) becomes more important. This feature is clearly shown by the disparity in e.s.d.'s for β_{22} 's and β_{33} 's in determination (2), where a straight comparison is reasonably valid, *i.e.* conversion to u_{ij} 's involves approximately the same constant. However, once again the dominant feature in the comparable formula for u_{ij} 's is R, and the lower e.s.d.'s come from determination (1) despite the large amount of high angle data in determination (2).

Discussion

The structure of this compound is of interest chiefly in two respects. First, and most obvious, it shows that the earlier interpretation of infrared spectra, in which binding of the DMSO to palladium is through sulfur is, indeed, correct. The general applicability of the infrared criteria proposed (Cotton, Francis & Horrocks, 1960) is thus strongly suggested.

Second, the detailed structure of DMSO in PdCl₂-(DMSO)₂ invites comparison with the molecular structure parameters of DMSO itself. Two reports of the DMSO structure, determined by X-ray crystallography have recently appeared (Viswamitra & Kannan, 1966; Thomas, Shoemaker & Eriks, 1966). We shall make comparisons with the molecular parameters of Thomas, Shoemaker & Eriks because their structure is (*a*) based on data collected nearer to room temperature $(+5^{\circ})$ than that of Viswamitra & Kannan (-60°) , (*b*)

* \bar{S}_2 computed assuming an isotropic data set containing 1300 independent reflections.

their data are more extensive and apparently better scaled, and (c) their refinement appears to have been more complete. Moreover, the thermal ellipsoids obtained in the M.I.T. study of $PdCl_2(DMSO)_2$ and those of Thomas, Shoemaker & Eriks for DMSO are comparable in magnitude and shape. Since librational corrections to the bond lengths have not been applied in the present work, comparisons will be made with the uncorrected bond lengths in the DMSO structure.

The weighted mean S–C distance found in the present studies is 1.778(5) Å. This is in good agreement with the values of 1.771(8) and 1.805(11) found by Thomas, Shoemaker & Eriks and the values of 1.80(1)and 1.81(1) found by Viswamitra & Kannan in DMSO itself, as well as with the S–C distances in the (CH₃)₃SO+ ion (Zimmermann, Barlow & McCullough, 1963; Coulter, Gantzel & McCullough, 1963).

The S-O bond length is of particular interest. In resonance terms, the electron distribution can be expressed as a hybrid of the three canonical forms (I), (II) and (III), with (II) presumably predominating.

Fig. 2. Molecular packing in $PdCl_2(DMSO)_2$ as shown by a projection down the crystallographic *a* axis.

Table 6. Root mean square amplitudes and direction cosines of the atomic vibrational ellipsoids

	$(u^2_{\rm max})^{1/2}$	$(u^{2}_{med})^{1/2}$	$(u^2_{\min})^{1/2}$
Pd	0.168	0.152	0.137
	0.918 0.084 , -0.388	0.037, 0.955, 0.296	0.396, -0.286, 0.873
S	0.188	0.154	0.135
	0.982, -0.092, 0.096	0.059, 0.976, 0.213	-0.182, -0.199, 0.946
C1	0.256	0.191	0.147
	-0.652, 0.254, 0.714	0.277, 0.957, -0.085	0.706, -0.143, 0.695
0	0.276	0.204	0.145
	0.945, -0.156, 0.289	0.205, 0.968, -0.144	-0.255, 0.196, 0.946
C(1)	0.236	0.197	0.166
	0.758, -0.639, -0.134	-0.052, 0.264, 0.962	0.651, 0.723, 0.235
C(2)	0.244	0.199	0.149
• •	0.934, 0.357, -0.031	-0.151, 0.314, 0.938	-0.324, 0.880, -0.347

In (III) it must be assumed that sulfur is using at least one d orbital for back-accepting π electrons from oxygen.

Clearly, if (III) represents a reasonable electronic distribution but one which is far from predominant in DMSO itself, the attachment of sulfur to an electrophile should increase the contribution of (III) and consequently decrease the S–O bond length. In $(CH_3)_3SO^+$, where the very powerful electrophile CH_3^+ has been attached to the sulfur of DMSO, the S–O bond length has decreased to 1.45(1) Å, from the 1.513(5) Å found in DMSO. In PdCl₂.(DMSO)₂, the S–O distance 1.475(5)Å is also shorter than in DMSO by 0.038(10)Å.

These changes in the S–O distance appear to be quite consistent with the corresponding changes in the S–O stretching frequency. This varies from 1096 cm^{-1} in gaseous DMSO to 1116 cm^{-1} in PdCl₂(DMSO)₂ to 1233 cm^{-1} in (CH₃)₃SO⁺.

The changes in bond length also seem to correlate in a reasonably semi-quantitative way with the assumed bond orders. Thus for S–N bonds one has a complete range of bond orders. Essentially a triple bond, with a length of 1.416(3) is found in F₃SN (Cotton & Wilkinson (1966) give a summary and references for the S–N bond lengths), while the S–N double bond in S₄N₄F₄ has a length of 1.54(1) Å and the single bonds found in $S_4N_4H_4$ have lengths of 1.66(1) and 1.67(1) Å respectively. Thus, for S–N bonds, the change in length per unit change in bond order is about 0.12 Å and a roughly similar value might be expected for S–O bonds. Moreover, the S–O bond of any given order ought to be a little shorter than the corresponding S–N bond due to the inherently smaller radii of O versus N.

Thus the S–O bond length of about 1.51 Å is consistent with the assignment of a bond order of about 2.0 when compared with the S–N bonds and the change from 1.51 to 1.45 Å on going from $(CH_3)_2SO$ to $(CH_3)_3SO^+$, that is 0.06 Å, would suggest that a very considerable increase, roughly to a bond order of 2 + (0.06)/(0.12) = 2.5 had occurred. In PdCl₂(DMSO)₂, on the other hand, a smaller change, 0.04 Å, perhaps to about 2.2, appears to have occurred.

The investigation at M.I.T. was supported in part by the U.S. Atomic Energy Commission (Contract AT(30-1)-965) and the National Science Foundation of the U.S.A. under Grants GP-3727 and GP-4329. We are also grateful to the Massachusetts Institute of Technology for generous allocations of computer time. The work at Texas Christian University was supported by the Robert A.Welch Foundation under Grant P-074. We would like to acknowledge NASA for their support in the form of a NASA traineeship (R.J.W.), Texas A and M University for use of their IBM 7094 computer and Texas Christian University for the donation of computer time.

Fig. 3. Molecular packing in $PdCl_2(DMSO)_2$ as shown by a projection down the crystallographic b axis.

References

- BAENZIGER, N C., DOYLE, J. R. & CARPENTER, C. (1961). Acta Cryst. 14, 303.
- BENNETT, M. J., COTTON, F. A. & WEAVER, D. L. (1966). Nature, Lond. 212, 286.
- COTTON, F. A. & ELDER, R. C. (1964). Inorg. Chem. 3, 397. COTTON, F. A. & FRANCIS, R. (1960). J. Amer. Chem. Soc.
- 82, 2986. COTTON, F. A. & FRANCIS, R. (1961). J. Inorg. Nucl. Chem.
- 17, 62. Cotton, F. A., Francis, R. & Horrocks, W. D., Jr. (1960).
- J. Phys. Chem. 64, 1534. COTTON, F. A. & WILKINSON, G. (1966). Advanced Inorganic Chemistry, A Comprehensive Course, 2nd ed., p. 533. New York and London: John Wiley (Interscience).
- Coulter, C. L., GANTZEL, P. K. & McCullough, J. D. (1963). Acta Cryst. 16, 676.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104
- CRUICKSHANK, D.W. J. (1949). Acta Cryst. 2, 154.
- CRUICKSHANK, D.W. J. (1960). Acta Cryst. 13, 774.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.

- FRANCIS, R. & COTTON, F. A. (1961). J. Chem. Soc. p. 2078. IBERS, J. A. (1962). In International Tables for X-ray Crystallography (1962).
- International Tables for X-ray Crystallography (1959). Vol. II, p. 295. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 213. Birmingham: Kynoch Press.
- LINDQUIST, I. & EINARSSON, P. (1959). Acta Chem. Scand. 13, 420.
- LIPSON, H. & COCHRAN, W. (1953). The Determination of Crystal Structures, p. 308. London: Bell.
- MEEK, D. W., STRAUB, D. K. & DRAGO, R. S. (1960). Bull. Chem. Soc. Japan, 33, 861.
- OI, S., KAWASE, T., NAKATSO, K. & KUROYA, H. (1960). Bull. Chem. Soc. Japan, 33, 861.
- PAULING, L. (1960). Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
- THOMAS, R., SHOEMAKER, C. B. & ERIKS, K. (1966). Acta Cryst. 21, 12.
- VISWAMITRA, M. A. & KANNAN, K. K. (1966). *Nature, Lond.* **209**, 1016.
- ZIMMERMANN, I. C., BARLOW, M. & MCCULLOUGH, J. D. (1963). Acta Cryst. 16, 883.

Acta Cryst. (1967). 23, 796

The Crystal Structure of Two Modifications of Tetraethylammonium Triiodide, $(C_2H_5)_4NI_3$

BY TINY MIGCHELSEN AND AAFJE VOS

Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Bloemsingel 10, Groningen, The Netherlands

(Received 13 May 1967)

The crystal structures of two modifications, I and II, of $(C_2H_5)_4NI_3$ have been determined by threedimensional X-ray methods. Modification I crystallizes in space group *Cmca* with $a=14\cdot207$, $b=15\cdot220$, $c=14\cdot061$ Å, e.s.d. $0\cdot05\%$, Z=8; II crystallizes in space group *Pnma* with $a=14\cdot552$, $b=13\cdot893$, $c=15\cdot156$ Å, e.s.d. $0\cdot05\%$, Z=8. Anisotropic least-squares refinement was carried out with 909 independent reflexions for I ($R=0\cdot045$) and with 1094 reflexions for II ($R=0\cdot042$). In I, there are two independent I_3^- ions at special positions with symmetry 2/m; the bond lengths in the two symmetrical I_3^- ions are $2\cdot928$ and $2\cdot943$ Å, e.s.d. $0\cdot0025$ Å. In II there are two independent I_3^- ions; the ions are nearly linear, but asymmetric with bond lengths of $2\cdot912$, $2\cdot961$ and $2\cdot892$, $2\cdot981$ Å, e.s.d. $0\cdot0035$ Å. A VESCF molecular orbital study of the electronic structure of the triiodide ions, including the effect of the crystal field, was made. A bond order *versus* bond length curve could be obtained.

Introduction

The nearly linear triiodide ion varies in structure with its environment in the crystal. Symmetric ions with equal bond lengths have, for instance, been observed in $(C_6H_5)_4AsI_3$ (Mooney Slater, 1959) whereas in crystals of CsI₃ (Tasman & Boswijk, 1955), the ions are asymmetric with a difference in I–I bond length of approximately 0.2 Å. From the data available at that time, Rundle (1961) concluded that the asymmetry and the total length of the ions increase with decreasing size of the surrounding cations. Hach & Rundle (1951) as well as Havinga & Wiebenga (1959) ascribe the variations in bond length to the influence of the (electrostatic) crystal field. Their qualitative conclusions have recently been supported by Brown & Nunn (1966) for the triiodide ions in $(C_6H_5)_4AsI_3$ and in CsI₃ by theoretical variable electronegativity self-consistent field (VESCF) molecular orbital calculations in which the crystal field was taken into account. Mooney Slater (1959) and Slater (1959), on the other hand, have suggested that in certain crystals 'pressure' may force the I_3^- ions to become shorter and more symmetric.

Examination of the structural data on which these discussions are based shows that most of the data used do not give reliable information on the lengths of the I-I bonds in I_3^- ions. In $(CH_3)_4NI_5$, $(C_2H_5)_4NI_7$ and Cs_2I_8 , the I_3^- ions show strong interaction either with each other or with iodine molecules so that complexes with I_5^- , I_7^- and I_8^{2-} ions respectively occur in these